如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
如图,已知与都是等边三角形,点在边上(不与、重合),与相交于点.(1)求证:∽;(2)若,设,;①求关于的函数解析式及定义域;②当为何值时,?
已知抛物线与轴交于点,点是抛物线上的点,且满足∥轴,点是抛物线的顶点.(1)求抛物线的对称轴及点坐标;(2)若抛物线经过点,求抛物线的表达式;(3)对(2)中的抛物线,点在线段上,若以点、、为顶点的三角形与相似,试求点的坐标.
如图,一块梯形木料,∥,经测量知cm,cm,,,求梯形木料的高.(备用数据:sin 67.4° = ,cos 67.4° = ,tan 67.4° = )
如图,已知在四边形中,与相交于点,AB⊥AC,CD⊥BD.(1)求证:∽;(2)若,,求的值
如图,已知在Rt中,,点在上,,, ,求的长.