已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
(本小题满分15分)如图,某公园在一块绿地的中央修建两个相间的矩形池塘,每个面积为10000米,池塘前方要留4米宽的走到,其余各为2米宽的走道,问每个池塘的长宽各为多少时占地总面积最少?
(本小题满分15分)知命题,命题,使.若命题“p且q”为真命题,求实数a的取值范围.
(本小题满分14分)过点(4,1)的直线l与x轴的正半轴,y轴正半轴分别交于A、B两点,当OA+OB最小时,求直线l的方程.
(本小题满分14分)已知不等式同解(即解集相同),求a、b的值.
设,函数,. (Ⅰ)当时,比较与的大小; (Ⅱ)若存在实数,使函数的图象总在函数的图象的上方,求的取值集合.