已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
设函数是定义域为的奇函数. (1)求的值; (2)若,且在上的最小值为,求的值. (3)若,试讨论函数在上零点的个数情况。
对于函数 (1)探索函数的单调性,并用单调性定义证明; (2)是否存在实数使函数为奇函数?
已知函数 (1)判断函数的奇偶性,并说明理由。 (2)若,求使成立的集合。
已知函数 (1)若在[-3,2]上具有单调性,求实数的取值范围。 (2)若的有最小值为-12,求实数的值;
求值: (1) (2)