如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E. (1)当∠BAD=20°时,∠EDC= °; (2)当DC等于多少时,△ABD≌△DCE,试说明理由; (3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.
第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.
(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是 .
(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.
如图,拦水坝的横断面为梯形 ABCD , AD=3m ,坝高 AE=DF=6m ,坡角 α=45° , β=30° ,求 BC 的长.
先化简,再求值: (1- 1 a )÷( a 2 + 1 a -2) ,其中 a= 3 +1 .
计算: ( - 1 ) 3 +|1- 2 |+ 8 3 .
如图,在平面直角坐标系中,平行四边形 OABC 的顶点 A , C 的坐标分别为 (6,0) , (4,3) ,经过 B , C 两点的抛物线与 x 轴的一个交点 D 的坐标为 (1,0) .
(1)求该抛物线的解析式;
(2)若 ∠AOC 的平分线交 BC 于点 E ,交抛物线的对称轴于点 F ,点 P 是 x 轴上一动点,当 PE+PF 的值最小时,求点 P 的坐标;
(3)在(2)的条件下,过点 A 作 OE 的垂线交 BC 于点 H ,点 M , N 分别为抛物线及其对称轴上的动点,是否存在这样的点 M , N ,使得以点 M , N , H , E 为顶点的四边形为平行四边形?若存在,直接写出点 M 的坐标,若不存在,说明理由.