如下图所示,点,,动点到点的距离是4,线段的中垂线交于点.(1)当点变化时,求动点的轨迹的方程;(2)若斜率为的动直线与轨迹相交于、两点,为定点,求面积的最大值.
已知函数满足且对于任意, 恒有成立.(1)求实数的值; (2)解不等式.
已知向量:a=(2sinx,2 sinx),b=(sinx,cosx). 为常数) (1)若,求的最小正周期; (2)若在[上最大值与最小值之和为5,求t的值; (3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求.
已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.
已知集合A=B= (1)当m=3时,求A(RB);(2)若AB ,求实数m的值.
(本小题满分15分)已知直线l的方程为:,直线l与x轴的交点为F, 圆O的方程为:,C、 D在圆上, CF⊥DF,设线段CD的中点为M.(1)如果CFDG为平行四边形,求动点G的轨迹;(2)已知椭圆的中心在原点,右焦点为F,直线l交椭圆于A、B两点,又,求椭圆C的方程.