已知函数,其中.(1)判断并证明函数的奇偶性;(2)判断并证明函数的单调性.
(15 分) 已知函数 (1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值; (2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围; (3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.
如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动. (1)当时,求椭圆的方程; (2)当的边长恰好是三个连续的自然数时,求面积的最大值.
(14 分) 从甲地到乙地一天共有A、B 两班车,由于雨雪天气的影响,一段时间内A 班车正点到达乙地的概率为0.7,B 班车正点到达乙地的概率为0.75。 (1)有三位游客分别乘坐三天的A 班车,从甲地到乙地,求其中恰有两名游客正点到达的概率 (答案用数字表示)。 (2)有两位游客分别乘坐A、B 班车,从甲地到乙地,求其中至少有1 人正点到达的概率 (答案用数字表示)。
(14 分)如图(1)是一正方体的表面展开图,MN 和PB 是两条面对角线,请在图(2)的正方体中将MN 和PB 画出来,并就这个正方体解决下面问题。 (1)求证:MN//平面PBD; (2)求证:AQ⊥平面PBD; (3)求二面角P—DB—M 的大小.
(14 分)已知函数的最大值为1. (1)求常数a 的值; (2)求的单调递增区间; (3)求≥ 0 成立的x 的取值集合.