如下图,在三棱锥中,底面,点为以为直径的圆上任意一动点,且,点是的中点,且交于点.(1)求证:面;(2)当时,求二面角的余弦值.
已知△ABC的周长为6,角A,B,C所对的边a,b,c成等比数列.(Ⅰ)求角B及边b的最大值;(Ⅱ)设△ABC的面积为S,求S+最大值.
某工厂2010年第三季度生产的A,B,C,D四种型号的产品产量用条形图形表示如图,现用分层抽样的方法从中选取50件样品参加2011年4月份的一个展销会。(1)A,B,C,D型号的产品各抽取多少件?(2)从50件样品随机地抽取2件,求这2件产品恰好是不同型号产品的概率。
已知数列满足.(1)求数列的通项公式;(2)对任意给定的,是否存在()使成等差数列?若存在,用分别表示和(只要写出一组);若不存在,请说明理由;(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为.
设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向量=,,=(x,y),当实数λ满足x="λ" x1+(1-λ) x2时,记向量=λ+(1-λ).定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指“k恒成立”,其中k是一个确定的正数.(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;(2)求证:函数在区间上可在标准k=下线性近似.(参考数据:e=2.718,ln(e-1)=0.541)
如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.(1)如图甲,要建的活动场地为△RST,求场地的最大面积;(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.