已知椭圆 经过点,且其右焦点与抛物线的焦点重合,过点且与坐标轴不垂直的直线与椭圆交于两点.(1)求椭圆的方程;(2)设O为坐标原点,线段上是否存在点,使得?若存在,求出的取值范围;若不存在,说明理由;(3)过点且不垂直于轴的直线与椭圆交于两点,点关于轴的对称点为,试证明:直线过定点.
如图,在四棱锥中,底面是菱形,且. (1)求证:; (2)若平面与平面的交线为,求证:.
已知的内角的对边分别为,. (1)若,,求的值; (2)若,求的值.
已知函数在时取得极小值. (1)求实数的值; (2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,说明理由.
设等比数列的首项为公比为为正整数),且满足是与的等差中项;数列满足 (1)求数列的通项公式; (2)试确定的值,使得数列为等差数列.
如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结. (1)若点C的坐标为,且,求椭圆的方程; (2)若求椭圆离心率e的值.