已知,为圆的直径,为垂直的一条弦,垂足为,弦交于.(1)求证:、、、四点共圆;(2)若,求线段的长.
一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记;出现“×”,则记,令(I)当时,记,求的分布列及数学期望;(II)当时,求的概率.
如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=1.(Ⅰ) 求椭圆的方程;(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
已知数列满足:且对任意的有.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在等差数列,使得对任意的有成立?证明你的结论
已知:。(1)求的值;(2)求的值。
已知复数,,且.(Ⅰ)若且,求的值;(Ⅱ)设=,求的最小正周期和单调增区间.