已知抛物线的方程 为,直线与抛物线相交于两点,点在抛物线上.(Ⅰ)若求证:直线的斜率为定值;(Ⅱ)若直线的斜率为且点到 直线的距离的和为,试判断的形状,并证明你的结论.
( 12分) 已知函数 (1)求函数的最小正周期和单调增区间; (2)函数的图像可以由函数的图像经过怎样的变换得到?
12分) 已知角是第三象限角,且 (1)化简; (2)若,求的值.
(本题10分) 已知函数f(x)=x3+ax2+bx+c(x)在x=1和x=-处都取得极值。 (1) 求a、b的值; (2) 求函数f(x)的单调递增区间; (3) 若对任意x,f(x)<c2恒成立,求实数c的取值范围。
(本题10分) 某医院用50万元购买了一台医疗仪器,这台仪器启用后每天都要进行保养、维修,设备在启用以后的第n(n∈N*)天应付保养维修费为(n+99)元。 (1) 若使用100天后报废 ,每天的平均消耗是多少? (2)使用多少天报废能使平均每天的耗费最少?
(本题9分) 已知椭圆C经过点M(1,),两个焦点为(-1,0)、(1,0)。 (1)求椭圆C的方程; (2)直线y=2x-1与椭圆C相交于A、B两点,求线段AB的长。