已知函数在处取得极大值.(Ⅰ)求在区间上的最大值;(Ⅱ)若过点可作曲线的切线有三条,求实数的取值范围.
如图,四边形 A B C D 为菱形, ∠ A B C =120°, E , F 是平面 A B C D 同一侧的两点, B E ⊥平面 A B C D , D E ⊥平面 A B C D , B E = 2 D E , A E ⊥ E C .
(Ⅰ)证明:平面 A E C ⊥平面 A F C ; (Ⅱ)求直线 A E 与直线 C F 所成角的余弦值.
S n 为数列 { a n } 的前 n 项和.已知 a n > 0 , a n 2 + 2 a n = 4 S n + 3 . (Ⅰ)求 { a n } 的通项公式; (Ⅱ)设 b n = 1 a n a n - 1 ,求数列 { b n } 的前 n 项和.
已知函数 f ( x ) = 4 x - x 2 , x ∈ R .
(Ⅰ)求 f ( x ) 的单调区间; (Ⅱ)设曲线 y = f ( x ) 与 x 轴正半轴的交点为 P ,曲线在点 P 处的切线方程为 y = g ( x ) ,求证:对于任意的正实数 x ,都有 f ( x ) ≤ g ( x ) ; (Ⅲ)若方程 f ( x ) = a ( a 为实数)有两个正实数根 x 1 , x 2 且 x 1 < x 2 ,求证: x 2 - x 1 < - a 3 + 4 1 3 .
已知椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的上顶点为 B ,左焦点为 F ,离心率为 5 5 , (Ⅰ)求直线 B F 的斜率; (Ⅱ)设直线 B F 与椭圆交于点 P ( P 异于点 B ),过点 B 且垂直于 B P 的直线与椭圆交于点 Q ( Q 异于点 B )直线 P Q 与 y 轴交于点 M , P M = l M Q . (ⅰ)求 l 的值; (ⅱ)若 P M sin ∠ B Q P = 7 5 9 ,求椭圆的方程.
如图,已知 A A 1 ⊥ 平面 A B C , B B 1 / / A A 1 , A B = A C = 3 B C = 2 5 , A A 1 = 7 , B B 1 = 2 7 ,点 E , F 分别是 B C , A 1 C 的中点.
(Ⅰ)求证: E F / / 平面 A 1 B 1 B A ; (Ⅱ)求证:平面 A E A 1 ⊥ 平面 B C B 1 . (Ⅲ)求直线 A 1 B 1  与平面 B C B 1 所成角的大小.