已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间.(3)当x∈时,求f(x)的值域.
设a,b,c都是正数,求证: (1)(a+b+c)≥9; (2)(a+b+c) ≥.
已知|a|<1,|b|<1,求证:<1.
知x、y、z均为实数, (1)若x+y+z=1,求证:++≤3; (2)若x+2y+3z=6,求x2+y2+z2的最小值.
已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:++…+≥n2.
若a,b∈R,求证:≤+.