(本小题满分15分)已知函数其中e为自然对数的底数。(I)若函数f (x)在[1, 2]上为单调增函数,求实数a的取值范围;(II)设曲线y=" f" (x)在点P(1, f (1))处的切线为l .试问:是否存在正实数a ,使得函数y=" f" (x)的图象被点P 分割成的两部分(除点P 外)完全位于切线l 的两侧?若存在,请求出a 满足的条件,若不存在,请说明理由.
极坐标系中椭圆C的方程为 以极点为原点,极轴为轴非负半轴,建立平面直角坐标 系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围; (Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补, 求证:.
如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H (Ⅰ)设EF中点为,求证:O、、B、P四点共圆 (Ⅱ)求证:OG =OH.
已知为抛物线的焦点,抛物线上点满足 (Ⅰ)求抛物线的方程; (Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
如图,已知三棱锥中,,,为中点,为中点,且为正三角形。 (Ⅰ)求证://平面; (Ⅱ)求证:平面⊥平面; (III)若,,求三棱锥的体积.
已知某校在一次考试中,5名学生的数学和物理成绩如下表:
(Ⅰ)若在本次考试中,规定数学成绩在70以上(包括70分)且物理成绩在65分以上(包括65分)的为优秀. 计算这五名同学的优秀率; (Ⅱ)根据上表,利用最小二乘法,求出关于的线性回归方程,其中 (III)利用(Ⅱ)中的线性回归方程,试估计数学90分的同学的物理成绩. (四舍五入到整数)