已知二次函数y=f(x)满足f(-2)=f(4)=-16,且f(x)最大值为2.(1)求函数y=f(x)的解析式.(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.
已知函数在区间和上单调递增,在上单调递减,其图象与轴交于三点,其中点的坐标为. (1)求的值; (2)求的取值范围; (3)求的取值范围.
知椭圆的两焦点、,离心率为,直线:与椭圆交于两点,点在轴上的射影为点. (1)求椭圆的标准方程; (2)求直线的方程,使的面积最大,并求出这个最大值.
某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为米,钢筋网的总长度为米. (1)列出与的函数关系式,并写出其定义域; (2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小? (3)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?
设曲线在点处的切线与轴的交点坐标为. (1)求的表达式; (2)设,求数列的前项和
已知命题:,命题:,若是的充分不必要条件,求实数的取值范围.