设椭圆C: 的离心率与双曲线x2-y2=1的离心率互为倒数,且在椭圆上. (Ⅰ) 求椭圆C的方程; (Ⅱ) 若椭圆C左、右焦点分别为,过的直线与椭圆C相交于两点,求面积的最大值.
已知三个正整数,1,按某种顺序排列成等差数列.(1)求的值;(2)若等差数列的首项、公差都为,等比数列的首项、公比也都为,前项和分别为,且,求满足条件的正整数的最大值.
在锐角中,分别是内角所对边长,且.(1)求角的大小;(2)若,求.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
已知函数.(Ⅰ)当时,求函数的单调区间和极值;(Ⅱ)若在区间上是单调递减函数,求实数的取值范围.
如图,在矩形中,,是的中点,以为折痕将向上折起,使到点位置,且.(Ⅰ)若是的中点,求证:面; (Ⅱ)求证:面面;(Ⅲ)求三棱锥的体积.