在数列{an}中,a1=1,an+1=2an+2n.(1)设bn=.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.
(本小题满分12分) 已知函数. (Ⅰ)讨论函数在上的单调性; (Ⅱ)设,且,求的值.
已知圆x2+y2=1和双曲线(x-1)2-y2=1,直线l与双曲线交于不同两点A、B,且线段AB的中点恰是l与圆相切的切点,求直线l的方程.
已知椭圆C的方程为,点P(a,b)的坐标满足,过点P的直线l与椭圆交于A、B两点,点Q为线段AB的中点,求: (1)点Q的轨迹方程. (2)点Q的轨迹与坐标轴的交点的个数.
对于数列,规定数列为数列的一阶差分数列,其中;一般地,规定为的k阶差分数列,其中且k∈N*,k≥2。 (1)已知数列的通项公式。试证明是等差数列; (2)若数列的首项a1=―13,且满足,求数列及的通项公式; (3)在(2)的条件下,判断是否存在最小值;若存在,求出其最小值,若不存在,说明理由。
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列. (Ⅰ)求q的值; (Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.