设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).(1)写出楼房平均综合费用y关于建造层数x的函数关系式;(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)
已知是常数),且(为坐标原点). (1)求函数的单调递增区间; (2)若时,的最大值为4,求的值;
已知是椭圆的左、右焦点,过点作 倾斜角为的直线交椭圆于两点,. (1)求椭圆的离心率; (2)若,求椭圆的标准方程.
已知函数的图象经过点,曲线在点处的切线恰好与 直线垂直. (1)求实数的值; (2)若函数在区间上单调递增,求的取值范围.
已知函数. (1)解关于的不等式; (2)若对,恒成立,求的取值范围.
已知直线的参数方程为(t为参数),曲线C的极坐标方程是以极点为原点,极轴为x轴正方向建立直角坐标系,点,直线与曲 线C交于A,B两点. (1)写出直线的普通方程与曲线C的直角坐标方程; (2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.