设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).(1)写出楼房平均综合费用y关于建造层数x的函数关系式;(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)
已知直线与椭圆相交于A、B两点.。 (1)若椭圆的离心率为,焦距为2,求线段AB的长; (2)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率e=2时,求椭圆的长轴的长.
.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。 (Ⅰ)求证:EF∥平面SAD; (Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
已知抛物线C:,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为,求点M的坐标(x0,y0);
若直线l的方向向量是=(1,2,2),平面α的法向量是=(-1,3,0),试求直线l与平面α所成角的余弦值。
已知函数若,不等式恒成立,求实数a的取值范围.