一座圆形花坛的半径为r,中间喷水池是面积为4的正方形.(1)用关于r的代数式写出该花坛的实际种花面积,并求出当r=2时花坛的实际种花面积(π取3.14,结果精确到0.1).(2)现需要将喷水池缩小为面积为2的正方形,请在图中画出缩小后的正方形,使它的顶点在网格的格点上.
为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩 ( x 分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:
分数段(分 )
频数(人 )
频率
51 ⩽ x < 61
a
0.1
61 ⩽ x < 71
18
0.18
71 ⩽ x < 81
b
n
81 ⩽ x < 91
35
0.35
91 ⩽ x < 101
12
0.12
合计
100
1
(1)填空: a = , b = , n = ;
(2)将频数分布直方图补充完整;
(3)该校对考试成绩为 91 ⩽ x ⩽ 100 的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为 1 : 3 : 6 ,请你估算全校获得二等奖的学生人数.
如图,菱形 ABCD 的边 AB 在 x 轴上,点 A 的坐标为 ( 1 , 0 ) ,点 D ( 4 , 4 ) 在反比例函数 y = k x ( x > 0 ) 的图象上,直线 y = 2 3 x + b 经过点 C ,与 y 轴交于点 E ,连接 AC , AE .
(1)求 k , b 的值;
(2)求 ΔACE 的面积.
尺规作图(只保留作图痕迹,不要求写出作法) :
如图,已知 ΔABC ,请根据“ SAS ”基本事实作出 ΔDEF ,使 ΔDEF ≅ ΔABC .
已知抛物线 y = m x 2 和直线 y = − x + b 都经过点 M ( − 2 , 4 ) ,点 O 为坐标原点,点 P 为抛物线上的动点,直线 y = − x + b 与 x 轴、 y 轴分别交于 A 、 B 两点.
(1)求 m 、 b 的值;
(2)当 ΔPAM 是以 AM 为底边的等腰三角形时,求点 P 的坐标;
(3)满足(2)的条件时,求 sin ∠ BOP 的值.
如图,已知 AC 、 AD 是 ⊙ O 的两条割线, AC 与 ⊙ O 交于 B 、 C 两点, AD 过圆心 O 且与 ⊙ O 交于 E 、 D 两点, OB 平分 ∠ AOC .
(1)求证: ΔACD ∽ ΔABO ;
(2)过点 E 的切线交 AC 于 F ,若 EF / / OC , OC = 3 ,求 EF 的值. [ 提示: ( 2 + 1 ) ( 2 − 1 ) = 1 ]