(本小题满分12分)已知数列中,其前项和满足().(1)求证:数列为等比数列,并求的通项公式;(2)设, 求数列的前项和;(3)设(为非零整数,), 试确定的值,使得对任意,有恒成立.
已知函数. (1)求函数的最小正周期; (2)在给定的坐标系内,用五点作图法画出函数在一个周期内的图象.
已知,求的值;
已知是第二象限角, 为其终边上的一点,且,求和的值
如图所示的等腰梯形是一个简易水槽的横断面,已知水槽的最大流量与横断面的面积成正比,比例系数为(). (Ⅰ)试将水槽的最大流量表示成关于函数; (Ⅱ)求当多大时,水槽的最大流量最大.
已知存在实数(其中)使得函数是奇函数,且在上是增函数。 (1)试用观察法猜出两组与的值,并验证其符合题意; (2)求出所有符合题意的与的值。