(本题满分10分.)已知函数,试判断函数在(0,+∞)上的单调性,并加以证明。
(本小题满分12分)上海世博会举办时间为2010年5月1日~10月31日。福建馆以“海西”为参博核心元素,主题为“潮涌海西,魅力福建”。福建馆招募了60名志愿者,某高校有l3人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所所学院(这5所学院编号为1~5号),人员分布如图所示。若从这13名入选者中随机抽取3人。(1)求这3人所在学院的编号恰好成等比数列的概率;(2)求这3人中中英文讲解员人数的分布列及数学期望。
(本小题满分12分)带有编号的五个球(1)全部投入4个不同的盒子里,有多少种不同的方法?(2)放进4个不同的盒子里,每盒一个,有多少种不同的方法?(3)将其中的4个球投入4个盒子里的一个(另一球不投入),有多少种不同的方法?(4)全部投入4个不同的盒子里,没有空盒,有多少种不同的放法?
(本小题满分12分)已知二阶矩阵有特征值及对应的一个特征向量,并且矩阵对应的变换将点(-1,2)变换成(-2,4).(1)求矩阵(2)求矩阵的另一个特征值及对应的一个特征向量的坐标之间关系(3)求直线:在矩阵的作用下的直线的方程
(本小题满分12分)已知的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中的常数项.
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0. (1)求a,b的值; (2)求函数的极大值与极小值的差.