修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米.已知后面墙的造价为每米45元,其他墙的造价为每米180元,设后面墙长度为米,修建此矩形场地围墙的总费用为元.(1)求的表达式;(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
、某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次,每日来回的次数是车头每次拖挂车厢个数的一次函数,每节车厢能载乘客110人. 问这列火车每天来回多少次,每次应拖挂多少车厢才能使运营人数最多?并求出每天最多运营人数.
已知常数, 变量x、y满足关系 .(1)若, 试以a、t表示y ;(2)若t在内变化时, y有最小值8, 求此时a和x的值各为多少?
已知集合,,(1)求 (2)若求实数m的取值范围。
已知,(1)求的解析式;(2)求 的值。
.(本小题满分12分)如图,梯形上的一个动点,(1)当最小时,求的值(2)当时,求的值