在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
(本题6分)先化简,再求值:,其中.
如图,在平面直角坐标系中,抛物线经过点(1,﹣1),且对称轴为在线,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为.(1)求这条抛物线所对应的函数关系式;(2)求点Q的坐标(用含的式子表示);(3)请探究PA+QB=AB是否成立,并说明理由;(4)抛物线()经过Q、B、P三点,若其对称轴把四边形PAQB分成面积为1:5的两部分,直接写出此时的值.
如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:DE为⊙O的切线;(2)若DB=8,DE=2,求⊙O半径的长.
如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴于点M,点M、N关于点P对称,连接AN、ON(1)求该二次函数的关系式.(2)若点A的坐标是(6,-3),求△ANO的面积.
某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.