(本小题满分12分)已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设,过点作与轴不重合的直线交椭圆于,两点,连接,分别交直线于,两点,若直线、的斜率分别为、,试问:是否为定值?若是,求出该定值,若不是,请说明理由.
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
设p:实数x满足<0,其中a<0;q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q的必要不充分条件,求a的取值范围.
已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M. (1)求椭圆C的方程; (2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由.
如图,在四棱柱中,底面是等腰梯形,,,是线段的中点. (1)求证:平面; (2)若平面且,求平面和平面所成的角(锐角)的余弦值.
设数列{an}前n项和为Sn,点均在直线上. (1)求数列{an}的通项公式; (2)设,Tn是数列{bn}的前n项和,试求Tn; (3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.