(本小题满分12分)为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动。这10名教师中,语文教师3人,数学教师4人,英语教师3人.求:(1)选出的语文教师人数多于数学教师人数的概率;(2)选出的3人中,语文教师人数的分布列和数学期望.
设数列的前项的和为,且, (Ⅰ)证明:数列是等比数列,并求通项; (Ⅱ)设,,证明:
已知椭圆C:的两个焦点为、,且经过点,一组斜率为的直线与椭圆C都相交于不同两点、。 (1)求椭圆C的方程; (2)证明:线段的中点都有在同一直线上; (3)对于(2)中的直线,设与椭圆C交于两点M、N,试探究椭圆上使MNQ面积为的点Q有几个?证明你的结论。(不必具体求出Q点的坐标)
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元. (1).把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域; (2).为了使全程运输成本最小,汽车应以多大速度行驶?
如右下图,在长方体ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分别是线段AB、BC上的点,且EB= FB=1. (1) 求二面角C—DE—C1的余弦值; (2) 求直线EC1与FD1所成的余弦值.
在中,分别是角的对边,且
82615980
(Ⅰ)求的面积;(Ⅱ)若,求角。