(本小题满分12分)已知是的一个极值点.(1)求函数的单调减区间;(2)设函数,若函数在区间内单调递增,求的取值范围.
(本小题12分)设点,点A在y轴上移动,点B在x轴正半轴(包括原点)上移动,点M在AB连线上,且满足,.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)设轨迹C的焦点为F,准线为l,自M引的垂线,垂足为N,设点使四边形PFMN是菱形,试求实数a;(Ⅲ)如果点A的坐标为,,其中>,相应线段AM的垂直平分线交x轴于.设数列的前n项和为,证明:当n≥2时,为定值.
(本小题满分12分)已知向量=(sinB,1-cosB),且与向量(2,0)所成角为,其中A, B, C是⊿ABC的内角.(1)求角B的大小; (2)求sinA+sinC的取值范围.
(本小题满分12分)数列的通项是关于的不等式的解集中整数的个数, (1)求数列的通项公式; (2)是否存在实数使不等式对一切大于1的自然数恒成立,若存在试确定的取值范围,否则说明原因.
(本小题满分14分)设A(-2,0),B(2,0),M为平面上任一点,若|MA|+|MB|为定值,且cosAMB的最小值为-.(1)求M点轨迹C的方程;(2)过点N(3,0)的直线l与轨迹C及单位圆x2+y2=1自右向左依次交于点P、Q、R、S,若|PQ|=|RS|,则这样的直线l共有几条?请证明你的结论.
(本小题满分12分)已知函数 () , (Ⅰ)试确定的单调区间 , 并证明你的结论 ;(Ⅱ)若时 , 不等式恒成立 , 求实数的取值范围 .