(本小题满分10分)已知命题:函数在定义域上单调递增;命题:不等式对任意实数恒成立,若且为真命题,求实数的取值范围.
(本小题满分12分)已知数列满足,,设数列的前n项和为,令。(Ⅰ)求数列的通项公式; (Ⅱ)求证:。
(本小题满分12分)如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(Ⅰ)证明:;(Ⅱ)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
(本小题满分12分)某大学对参加了“世博会”的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分。假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立。(Ⅰ)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;(Ⅱ)记这这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量x,求随机变量x的分布列和数学期望Ex。
(本小题满分10分)在中,、、分别为角A、B、C的对边,且,,(其中).(Ⅰ)若时,求的值;(Ⅱ)若时,求边长的最小值及判定此时的形状。
、设函数f(x) = x2+bln(x+1),(1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值;(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围;(3)若b=-1,证明对任意的正整数n,不等式成立;