已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线.(1)求曲线的轨迹方程;(2)是与圆以及圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求的长.
(本小题满分12分) 写出命题“一组对边平行且相等的四边形是平行四边形”的逆命题,否命题,逆否命题,并且判断其真假.
两直线分别过A(-a,0),B(a,0)且绕A,B旋转,它们在y轴上的截距分别为b1,b2,b1,b2=a2,求两直线交点的轨迹方程.
已知函数,试研究该函数的性质.
已知函数在上为增函数,且,为常数,. (1)求的值; (2)若在上为单调函数,求的取值范围; (3)设,若在上至少存在一个,使得成立,求的取值范围.
已知椭圆C的中心在原点,焦点在轴上,椭圆上的点到左、右焦点的距离之和为,离心率. (1)求椭圆C的方程; (2)过左焦点的直线与椭圆C交于点,以为邻边作平行四边形,求该平行四边形对角线的长度的取值范围.