(本小题满分12分)如图,有一块矩形空地ABCD,要在这块空地上开辟一个内接四边形EFGH为绿地,使其四个顶点分别落在矩形的四条边上.已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地EFGH面积为y.(1)写出y关于x的函数解析式,并求出它的定义域;(2)当AE为何值时,绿地面积y最大?并求出最大值。
(本小题满分12分)已知(其中,为实数).(I)若在处取得极值为2,求、的值;(II)若在区间上为减函数且,求的取值范围.
(本小题满分12分)已知椭圆的左、右焦点分别为、,离心率,右准线方程为.(I)求椭圆的标准方程;(II)过点的直线与该椭圆交于M、N两点,且,求直线的方程.
(本小题满分12分)(文科做前两问;理科全做.)某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
(本小题满分12分)已知等比数列中,,,且公比.(Ⅰ)求数列的通项公式;(Ⅱ)设,求的最大值及相应的值.
(本小题满分12分)如图所示,在正三棱柱中,,,是的中点,在线段上且.(I)证明:面;(II)求二面角的大小.