(年蒙自市初中学业水平第一次模拟测试)在某市地铁施工期间,交管部门在施工路段设立了矩形路况警示牌(如图所示).已知立杆的高度是米,从路侧点处测得路况警示牌顶端点和底端点的仰角分别是和,求路况警示牌宽的值.(精确到0.1米)(参考数据:≈1.41,≈1.73)
如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)秒.解答如下问题: (1)当t为何值时,PQ∥BO? (2)设△AQP的面积为S, ①求S与t之间的函数关系式,并求出S的最大值; ②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.
如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm. (1)求证:BF是⊙O的切线. (2)若AD=8cm,求BE的长. (3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.
在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀. (1)若从中任取一球,球上的数字为偶数的概率为多少? (2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率. (3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.
如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE:ED,单位:m)
如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.