(黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?
.已知均为整数,直线与三条抛物线和交点的个数分别是2,1,0,若
已知:在中,,点为边的中点,点在上,连结并延长到点,使,点在线段上,且.(1)如图,当时,求证:;(2)如图,当时,则线段之间的数量关系为 ;(3)在(2)的条件下,延长到,使,连接,若,求的值.
已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.⑴求证:PA是⊙O的切线;⑵求⊙O的半径及CD的长.
作图题(要求用直尺和圆规作图,不写出作法,只保留作图痕迹,不要求写出证明过程).已知:圆. 求作:一条线段,使它把已知圆分成面积相等的两部分.
已知:如图,一架直升飞机在距地面450米上空的P点,测得A地的俯角为,B地的俯角为(点P和AB所在的直线在同一垂直平面上),求A、B两地间的距离.