(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)
小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上按上学的步行速度走完100米,用了150步.(1)小刚步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的距离分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时原路回家,在离少年宫300米处(还未到少年宫)与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②若小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标.
“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子比乌龟先到达终点.其中正确的说法是________.(把你认为正确说法的序号都填上)
一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2m,到达坡底时,小球速度达到40m/s.(1)求小球速度v(m/s)与时间t(s)之间的函数关系式;(2)求t的取值范围;(3)求3.5s时小球的速度;(4)当t为何值时,小球的速度为16m/s?
求下列函数中的自变量x的取值范围.(1)y=3x2-2;(2);(3);(4).
已知函数y=2x-3.(1)求当x=-4时的函数值;(2)当x为何值时,函数值为0?