某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.
已知二次函数 y = a x 2 + bx + c ( a > 0 ) .
(1)若 a = 1 2 , b = c = - 2 ,求方程 a x 2 + bx + c = 0 的根的判别式的值;
(2)如图所示,该二次函数的图象与 x 轴交于点 A ( x 1 , 0 ) 、 B ( x 2 , 0 ) ,且 x 1 < 0 < x 2 ,与 y 轴的负半轴交于点 C ,点 D 在线段 OC 上,连接 AC 、 BD ,满足 ∠ ACO = ∠ ABD , - b a + c = x 1 .
①求证: ΔAOC ≅ ΔDOB ;
②连接 BC ,过点 D 作 DE ⊥ BC 于点 E ,点 F ( 0 , x 1 - x 2 ) 在 y 轴的负半轴上,连接 AF ,且 ∠ ACO = ∠ CAF + ∠ CBD ,求 c x 1 的值.
如图所示, AB 是 ⊙ O 的直径,点 C 、 D 是 ⊙ O 上不同的两点,直线 BD 交线段 OC 于点 E 、交过点 C 的直线 CF 于点 F ,若 OC = 3 CE ,且 9 ( E F 2 - C F 2 ) = O C 2 .
(1)求证:直线 CF 是 ⊙ O 的切线;
(2)连接 OD 、 AD 、 AC 、 DC ,若 ∠ COD = 2 ∠ BOC .
①求证: ΔACD ∽ ΔOBE ;
②过点 E 作 EG / / AB ,交线段 AC 于点 G ,点 M 为线段 AC 的中点,若 AD = 4 ,求线段 MG 的长度.
如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A 作 AB ⊥ y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E .
(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;
(2)连接 OE 、 BE 、 AE ,记 ΔOBE 、 ΔADE 的面积分别为 S 1 、 S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.
目前,国际上常用身体质量指数" BMI "作为衡量人体健康状况的一个指标,其计算公式: BMI = G h 2 ( G 表示体重,单位:千克; h 表示身高,单位:米).已知某区域成人的 BMI 数值标准为: BMI < 16 为瘦弱(不健康); 16 ⩽ BMI < 18 . 5 为偏瘦; 18 . 5 ⩽ BMI < 24 为正常; 24 ⩽ BMI < 28 为偏胖; BMI ⩾ 28 为肥胖(不健康).
某研究人员从该区域的一体检中心随机抽取55名成人的体重、身高数据组成一个样本,计算每名成人的 BMI 数值后统计:
(男性身体属性与人数统计表)
身体属性
人数
瘦弱
2
偏瘦
正常
1
偏胖
9
肥胖
m
(1)求这个样本中身体属性为"正常"的人数;
(2)某女性的体重为51.2千克,身高为1.6米,求该女性的 BMI 数值;
(3)当 m ⩾ 3 且 n ⩾ 2 ( m 、 n 为正整数)时,求这个样本中身体属性为"不健康"的男性人数与身体属性为"不健康"的女性人数的比值.
将一物体(视为边长为 2 π 米的正方形 ABCD ) 从地面 PQ 上挪到货车车厢内.如图所示,刚开始点 B 与斜面 EF 上的点 E 重合,先将该物体绕点 B (E)按逆时针方向旋转至正方形 A 1 B C 1 D 1 的位置,再将其沿 EF 方向平移至正方形 A 2 B 2 C 2 D 2 的位置(此时点 B 2 与点 G 重合),最后将物体移到车厢平台面 MG 上.已知 MG / / PQ , ∠ FBP = 30 ° ,过点 F 作 FH ⊥ MG 于点 H , FH = 1 3 米, EF = 4 米.
(1)求线段 FG 的长度;
(2)求在此过程中点 A 运动至点 A 2 所经过的路程.