甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
(本小题满分12分) 如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)PQ⊥AB,垂足为Q.设PC=x,PQ= y.⑴求y与x的函数关系式;⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.
(本小题满分12分)如图,已知抛物线与关于轴对称,并与轴交于点M,与轴交于点A和B.(1)求出的解析式,试猜想出一般形式关于轴对称的二次函数解析式(不要求证明); (2)若AB的中点是C,求; (3)如果一次函数过点,且与抛物线,相交于另一点,如果,且,求的值。
(本小题满分10分)△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)如果BC=10,AB=12,求CG的长.
(本小题满分10分) 在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1); 第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2) 请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?
(本小题满分12分) 如图,反比例函数的图象经过A、B两点,根据图中信息解答下列问题:(1)写出A点的坐标;(2)求反比例函数的解析式;(3)若点A绕坐标原点O旋转90°后得到点C,请写出点C的坐标;并求出直线BC的解析式.