下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
阅读以下内容,并回答问题: 若一个三角形的两边平方和等于第三边平方的两倍,我们称这样的三角形为奇异三角形. (1)命题“等边三角形一定是奇异三角形”是 命题(填“真”或“假”); (2)在△ABC中,已知∠C=90°,△ABC的内角∠A、∠B、∠C所对边的长分别为a、b、c,且b>a,若Rt△ABC是奇异三角形,求a:b:c; (3)如图,已知AB是⊙O的直径,C是⊙O上一点(点C与点A、B不重合),D是半圆的中点,C、D在直径AB的两侧,若存在点E,使AE=AD,CB=CE.求证:△ACE是奇异三角形.
如图,四边形OBCD中的三个顶点在⊙O上,点A是优弧BD上的一个动点(不与点B、D重合). (1)当圆心O在∠BAD内部,∠ABO+∠ADO=60°时,∠BOD= ; (2)当圆心O在∠BAD内部,四边形OBCD为平行四边形时,求∠A的度数; (3)当圆心O在∠BAD外部,四边形OBCD为平行四边形时,请直接写出∠ABO与∠ADO的数量关系.
实践操作 如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) (1)作∠BAC的平分线,交BC于点O; (2)以O为圆心,OC为半径作圆. 综合运用在你所作的图中, (1)AB与⊙O的位置关系是 ;(直接写出答案) (2)若AC=5,BC=12,求⊙O的半径.
今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.小丽:每双定价2元,每天能卖出500双,而且这种袜子的售价每上涨0.1元,其每天的销售量将减少10双.小明:照你所说,如果要实现每天800元的销售利润,那该如何定价?别忘了,物价局有规定,售价不能超过进价的300%呦.
如图,AC切⊙O于点C,AB过圆心O交⊙O于点B、D,且AC=BC,(1)求∠A的度数;(2)若⊙O的半径为2,求图中阴影部分的面积.