如图.在锐角中,D,E分别为AB, BC中点, F为AC上一点,且=,DM//EF交AC于点M(1)求证:DM=DA(2)点G在BE上, 且=∠C.如图②,求证:(3)在图②中.取CE上一点H,使∠CFH=∠B.若BG="1" 求EH的长.
如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.
在一次暑假旅游中,小亮在仙岛湖的游船上(A处),测得湖西岸的山峰太婆尖(C处)和湖东岸的山峰老君岭(D处)的仰角都是45°.游船向东航行100米后(B处),测得太婆尖,老君岭的仰角分别为30°,60°.试问太婆尖、老君岭的高度为多少米?
如图,海中有一小岛B,它的周围15海里内有暗礁.有一货轮以30海里/时的速度向正北航行,当它航行到A处时,发现B岛在它的北偏东30°方向,当货轮继续向北航行半小时后到达C处,发现B岛在它的东北方向.问货轮继续向北航行有无触礁的危险?(参考数据:≈1.7,≈1.4)
为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);(2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).
某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)在楼梯口B左侧正前方距离舞台底部C点3m处有一株大树,修新楼梯AD时底端D是否会触到大树?并说明理由.