在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为 ;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?
解方程: (1) (2)
化简: (1) (2)
已知二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H. (1)求二次函数的解析式; (2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP; (3)当△FPM是等腰直角三角形时,求P点的坐标.
为了节能环保,新建的阜益路上路灯都是太阳能路灯.已知太阳能路灯售价为5000元/个,有甲、乙两经销商销售此产品.甲用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若政府投资120万元,最多能购买多少个太阳能路灯?
如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°. (1)求证:DP是⊙O的切线; (2)若⊙O的半径为3cm,求图中阴影部分的面积.