为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图: 根据以上统计图提供的信息,回答下列问题: (1)此次被调查的学生共 人; (2)补全条形统计图; (3)扇形统计图中,艺术类部分所对应的圆心角为 度; (4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有 人.
(本小题满分6分)先化简,再求值.,其中,.
已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E. (1)如图1,EB=AD,求证:△ABE是等腰直角三角形; (2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.
已知点A(-2,n)在抛物线上. (1)若b=1,c=3,求n的值; (2)若此抛物线经过点B(4,n),且二次函数的最小值是-4,请画出点P(,)的纵坐标随横坐标变化的图象,并说明理由.
如图,在平面直角坐标系中,点 A ( 2 , n ) , B ( m , n ) ( m > 2 ) , D ( p , q ) ( q < n ) ,点 B , D 在直线 y = 1 2 x + 1 上.四边形 A B C D 的对角线 A C , B D 相交于点 E ,且 A B / / C D , C D = 4 , B E = D E , △ A E B 的面积是2.求证:四边形 A B C D 是矩形.
已知实数a,b满足,,当时,函数()的最大值与最小值之差是1,求a的值.