有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.
某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)
甲
6
a
20
200
乙
10
40+0.05x2
80
其中a为常数,且 3 ≤ a ≤ 5 。
(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.
(1)求证:AC平分 ∠ DAB ;
(2)连接BE交AC于点F,若 cos ∠ CAD = 4 5 ,求 AF FC 的值.
已知反比例函数 y = 4 x .
(1)若该反比例函数的图象与直线 y = kx + 4 ( k ≠ 0 ) 只有一个公共点,求k的值;
(2)如图,反比例函数 y = 4 x ( 1 ≤ x ≤ 4 ) 的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.
某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.
请你根据以上的信息,回答下列问题:
(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .
(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.
如图,点B、E、C、F在同一条直线上, AB = DE , AC = DF , BE = CF ,求证: AB ∥ DE .