如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.
如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数的图像交与点C和点D(-1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数;(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.
如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交与点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2,求CD的长.
我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图10、图11是根据调查结果做出的统计图的一部分.请根据信息解答下列问题:(1)图10中淘米水浇花所占的百分比为 ;(2)图10中安装节水设备所在的扇形的圆心角度数为 ;(3)补全图11(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?图10图11
李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?