某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F. (1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= S△ABC; (2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
求证:有一条直角边及斜边上的高对应相等的两个直角三角形全等.
如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?为什么?
已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°试判断CF和EF的关系,并说明你的理由.
如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O. (1)求证:△ABC≌△DCB; (2)△OBC是何种三角形?证明你的结论.