在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.(1)若点M(2,a)是反比例函数(k为常数,)图象上的“理想点”,求这个反比例函数的表达式;(2)函数(m为常数,)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.
已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE. (1)在下图中,用尺规作∠BAD的平分线AE(保留作图痕迹不写作法),并证明四边形ABED是菱形. (2)若∠ABC=60°,EC=2BE.求证:ED⊥DC.
解不等式组,把解集表 示在数轴上,并求出不等式组的整数解.
先化简,再求值:,其中a2﹣4=0.
在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E. (1)求证:AE•AO=BF•BO; (2)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式; (3)是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时的OF的长:若不存在,请说明理由.
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF. (1)求证:OF∥BC;(2)求证:△AFO≌△CEB; (3)若EB=5cm,CD=cm,设OE=x,求x值及阴影部分的面积.