为了倡导“节约用水,从我做起”,宜兴市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计宜兴市直机关500户家庭中月平均用水量不超过12吨的约有多少户?
如图,在矩形ABCD中,AB=4,BC=4.点M是AC上动点(与点A不重合),设AM=x,过点M作AC的垂线,交直线AB于点N. (2)以D、M、N三点为顶点的△DMN的面积能否达到矩形ABCD面积的?若能,请求出此时x的值,若不能,请说明理由.
小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过. (1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子,?
如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保 持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时 又以0.8 m/s的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇, 甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8 m/s的速度往下跑,而乙到达底端后则 在原地等候甲.图2中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底 端的路程y(m)与所用时间x(s)之间的部分函数关系,结合图象解答下列问题: (1)点B的坐标是 ▲; (2)求AB所在直线的函数关系式; (3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?