(·湖南常德)某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对他人在公共场所吸烟的态度(分三类:A表示主动制止;B表示反感但不制止,C表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图。请根据图中提供的信息解答下列问题:(1)图1中,“吸烟”类人数所占扇形的圆心角的度数是多少?(2)这次被调查的市民有多少人?(3)补全条形统计图(4)若该市共有市民760万人,求该市大约有多少人吸烟?
(本小题10分)如图,抛物线与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程的两个实数根.(1)求A、B两点的坐标; (2) 求出此抛物线的的解析式及顶点D的坐标;(3)求出此抛物线与x轴的另一个交点C的坐标;(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标,若不存在,说明理由.
(本小题8分)如图,AB为⊙O的直径,割线PCD交⊙O于C、D, .(1)求证:PA是⊙O的切线;(2)若PA=6,CD=3PC,求PD的长.
(本小题6分) 如图,OA、OC是⊙O的半径,OA=1,且OC⊥OA,点D在弧AC上,弧AD=2弧CD,在OC求一点P,使PA+PD最小,并求这个最小值.
(本小题6分) 如图,在梯形中,,,,,,求的长.
(本小题7分)已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;(2)求OD的长;(3)若2sinA-1=0,求⊙O的直径.