一袋装有编号为1,2,3的三个形状、大小、材质等相同的小球,从袋中随意摸出1个球,记事件A为“摸出的球编号为奇数”,随意抛掷一个质地均匀正方体骰子,六个面上分别写有1-6这6个整数,记事件B为“向上一面的数字是3的整数倍”,请你判断等式“P(A)=2P(B)”是否成立,并说明理由.
当a=﹣3,b=1,时,分别求代数式(a﹣b)2与a2﹣2ab+b2的值,并比较计算结果;你有什么发现?利用你发现的结果计算:20122﹣2×2012×2011+20112.
试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.
如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k= _________ .
如图1,是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为 (m﹣n)2 ;(2)观察图2,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系式: (m﹣n)2+4mn=(m+n)2 ;(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= ±5 .(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.
观察如图图形由左到右的变化,计算阴影部分的面积,并用面积的不同表达形式写出相应的代数恒等式.