(巴中)如图,在平面直角坐标系xOy中,二次函数()的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
如图, AB 是半圆的直径, AC 为弦,过点 C 作直线 DE 交 AB 的延长线于点 E .若 ∠ ACD = 60 ° , ∠ E = 30 ° .
(1)求证:直线 DE 与半圆相切;
(2)若 BE = 3 ,求 CE 的长.
当前, “精准扶贫”工作已进入攻坚阶段, 凡贫困家庭均要“建档立卡” . 某初级中学七年级共有四个班, 已“建档立卡”的贫困家庭的学生人数按一、 二、 三、 四班分别记为 A 1 , A 2 , A 3 , A 4 ,现对 A 1 , A 2 , A 3 , A 4 统计后, 制成如图所示的统计图 .
(1) 求七年级已“建档立卡”的贫困家庭的学生总人数;
(2) 将条形统计图补充完整, 并求出 A 1 所在扇形的圆心角的度数;
(3) 现从 A 1 , A 2 中各选出一人进行座谈, 若 A 1 中有一名女生, A 2 中有两名女生, 请用树状图表示所有可能情况, 并求出恰好选出一名男生和一名女生的概率 .
如图,抛物线 y = − x 2 + bx + c 与 x 轴分别交于 A ( − 1 , 0 ) , B ( 5 , 0 ) 两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点 C ,作 CD 垂直 x 轴于点 D ,连接 AC ,且 AD = 5 , CD = 8 ,将 Rt Δ ACD 沿 x 轴向右平移 m 个单位,当点 C 落在抛物线上时,求 m 的值;
(3)在(2)的条件下,当点 C 第一次落在抛物线上记为点 E ,点 P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点 Q ,使以点 B 、 E 、 P 、 Q 为顶点的四边形是平行四边形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.
如图, AB 是 ⊙ O 的直径,点 C 在 AB 的延长线上, AD 平分 ∠ CAE 交 ⊙ O 于点 D ,且 AE ⊥ CD ,垂足为点 E .
(1)求证:直线 CE 是 ⊙ O 的切线.
(2)若 BC = 3 , CD = 3 2 ,求弦 AD 的长.
如图,一次函数 y = kx + b 的图象与反比例函数 y = m x 的图象交于点 A ( − 3 , m + 8 ) , B ( n , − 6 ) 两点.
(1)求一次函数与反比例函数的解析式;
(2)求 ΔAOB 的面积.