(泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.
如图,一次函数 y=kx+b 的图象分别与反比例函数 y= a x 的图象在第一象限交于点 A(4,3) ,与 y 轴的负半轴交于点 B ,且 OA=OB .
(1)求函数 y=kx+b 和 y= a x 的表达式;
(2)已知点 C(0,5) ,试在该一次函数图象上确定一点 M ,使得 MB=MC ,求此时点 M 的坐标.
如图,河的两岸 l 1 与 l 2 相互平行, A 、 B 是 l 1 上的两点, C 、 D 是 l 2 上的两点,某人在点 A 处测得 ∠CAB=90° , ∠DAB=30° ,再沿 AB 方向前进20米到达点 E (点 E 在线段 AB 上),测得 ∠DEB=60° ,求 C 、 D 两点间的距离.
(1)观察下列图形与等式的关系,并填空
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有 n 的代数式填空:
1+3+5+…+(2n-1)+( )+(2n-1)+…+5+3+1= .
如图,在边长为1个单位长度的小正方形组成的 12×12 网格中,给出了四边形 ABCD 的两条边 AB 与 BC ,且四边形 ABCD 是一个轴对称图形,其对称轴为直线 AC .
(1)试在图中标出点 D ,并画出该四边形的另两条边;
(2)将四边形 ABCD 向下平移5个单位,画出平移后得到的四边形 A'B'C'D' .
在平面直角坐标系 xOy 中, ⊙O 的半径为1, A , B 为 ⊙O 外两点, AB=1 .
给出如下定义:平移线段 AB ,得到 ⊙O 的弦 A ' B ' ( A ' , B' 分别为点 A , B 的对应点),线段 A A ' 长度的最小值称为线段 AB 到 ⊙O 的“平移距离”.
(1)如图,平移线段 AB 得到 ⊙O 的长度为1的弦 P 1 P 2 和 P 3 P 4 ,则这两条弦的位置关系是 P 1 P 2 // P 3 P 4 ;在点 P 1 , P 2 , P 3 , P 4 中,连接点 A 与点 的线段的长度等于线段 AB 到 ⊙O 的“平移距离”;
(2)若点 A , B 都在直线 y= 3 x+2 3 上,记线段 AB 到 ⊙O 的“平移距离”为 d 1 ,求 d 1 的最小值;
(3)若点 A 的坐标为 (2, 3 2 ) ,记线段 AB 到 ⊙O 的“平移距离”为 d 2 ,直接写出 d 2 的取值范围.