(自贡)在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
已知:如图,□ABCD中,点E是AD的中点,延长CE交BA的延长线于点F. 求证:AB=AF.
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.求证:ME = MF.如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.
如图已知AB是的切线,切点为交于点过点作交于点求证:;若的半径为4,求CD的长;求阴影部分的面积。
将□ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.求证:△ABE≌△AGF.连结AC,若□ABCD的面积等于8,,,试求y与x之间的函数关系式.
如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹).若A点的坐标为(0,4),D点的坐标为(7,0),直线CD与⊙M的位置关系为________,再连结MA、MC,将扇形AMC卷成一个圆锥,求此圆锥的侧面积.