如图,在平面直角坐标系xoy中,点O为坐标原点,矩形AOCD的边OC、OA分别在x轴、y轴上,点D的坐标为(6,4),点P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AO于E点.(1)当点P坐标为(4,4)时,求点E的坐标;(2)当点P坐标为(5,4)时,在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求出点Q的坐标;若不存在,请说明理由;(3)当点P在AD上运动时,对应的点E也随之在AO上运动,求OE的取值范围.
已知:如图,点B、C、E在同一条直线上,AC∥DE,AC=CE,BC=DE,求证:AB=CD。
分解因式:(1)n(m-2)-n(2-m);(2)2a-4ab+2ab;
先化简再求值:4(m+1)2-(2m+5)(2m-5),其中m=-3。
计算:(1);(2)(2a)3b4÷12a3b2
如图,在直角坐标系中,⊙P与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接BC,AC.(1)求过A、B、C三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小,若存在求出点Q的坐标,若不存在,请说明理由;(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.