(达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?
在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接.(1)如图1,当点在线段上,如果,则度;(2)设,. ①如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由; ②当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论.
(本题满分6分) 如图所示,点P是等边△ABC外一点,∠APC =60°, PA、BC交于点D, 求证:
如图所示,在中,分别是和上的一点,与交于点,给出下列四个条件:①;②;③;④.(1)上述四个条件中,哪两个条件可以判定是等腰三角形(用序号写出所有的情形);(2)选择(1)小题中的一种情形,证明是等腰三角形.
如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28,AB=20cm,AC=8cm,求DE的长.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证: Rt△ABE≌Rt△CBF;(2)若∠CAE=30º,求∠ACF度数.