(自贡)如图,已知抛物线()的对称轴为直线,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴上的一个动点,求使△BPC为直角三角形的点P的坐标.
已知某种水果的批发单价与批发量的函数关系如图(1)所示.请说明图中①、②两段函数图象的实际意义;写出批发该种水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果. 经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
如图,在中,是上一点,交于点,,,与有什么位置关系?证明你的结论.
你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点上下转动,立柱与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度,有何数量关系?为什么?
已知:如图,是的中点,,.求证:.
小明、小敏两人一起做数学作业,小敏把题读到如图8(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说: “这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图8(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.要判断三角形全等,从这个问题中你得到了什么启发?