已知一个口袋中装有4个只有颜色不同的球,其中3个白球,1个黑球.(1)求从中随机抽取出一个黑球的概率是多少;(2)若从口袋中摸出一个球,记下颜色后不放回,再摸出一个球。请列表或作出树状图,求两次都摸出白球的概率?
若∣m+n-5∣+(2m+3n-5)2=0,求(m+n)2的值。
已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数。
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下: ∵∠1 =∠2(已知), 且∠1 =∠CGD(__________________________) ∴∠2 =∠CGD(等量代换) ∴CE∥BF(_______________________________) ∴∠=∠BFD(__________________________) 又∵∠B =∠C(已知) ∴∠BFD =∠B(等量代换) ∴AB∥CD(________________________________)
已知:抛物线(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于A、B两点(A在B的左边). (1)求此抛物线的表达式; (2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=1,求y1与x的函数关系式,并写出自变量x的取值范围; (3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由; ②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.
如图,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2. (1)求证:DC=BC; (2)E是梯形内一点,连接DE、CE,将△DCE绕点C顺时针旋转90°,得△BCF,连接EF.判断EF与CE的数量关系,并证明你的结论; (3)在(2)的条件下,当CE=2BE,∠BEC=135°时,求cos∠BFE的值.